| Table of Contents ▸ List of Commands ▸ Neural Networks ▸ nn_conv | ◀ nn_columnpatch2d | nn_conv2d ▶ |
nn_conv
Arguments:
- out,in,nb_channels>0,_kernel_width>0,_kernel_height>0,_kernel_depth>0,_stride_x>0,_stride_y>0,_stride_z>0,_dilation_x,_dilation_y,_dilation_z,_shrink_x>=0,_shrink_y>=0_,_shrink_z>=0,boundary_conditions,_learning_mode,_weight_decay>=0,_initialization
Description:
Add a conv layer (generic 1D/2D/3D convolutional layer) to the current network.boundary_conditions can be { 0:Dirichlet | 1:Neumann | 2:Periodic | 3:Mirror }.
learning_mode can be { 0:No learning | 1:Weights only | 2:Biases only | 3:Weights+biases }.
initialization can be { 0:Zero | 1:identity | 2:Lecun-initialization | 3:He-initialization | 4:Residual He-initialization }.
Default values:
stride_x=stride_y=stride_z=1, dilation_x=dilation_y=dilation_z=1, shrink_x=shrink_y=shrink_z=0, boundary_conditions=1, learning_mode=3, weight_decay=0 and initialization=3.


Home
Download
News
Mastodon
Bluesky
X
Summary - 17 Years
Summary - 16 Years
Summary - 15 Years
Summary - 13 Years
Summary - 11 Years
Summary - 10 Years
Resources
Technical Reference
Scripting Tutorial
Video Tutorials
Wiki Pages
Image Gallery
Color Presets
Using libgmic
G'MIC Online
Community
Discussion Forum (Pixls.us)
GimpChat
IRC
Report Issue