
The Handbook

Version 3.5.2

© David Tschumperlé / GREYC / CNRS

2025/01/29

Preamble

• This document is distributed under the GNU Free Documentation License , version 1.3.
• A .pdf version of this document is available.

Version

G'MIC: GREYC's Magic for Image Computing
https://gmic.eu
Version 3.5.2

Copyright © 2008-2025, David Tschumperlé / GREYC / CNRS
https://www.greyc.fr

Table of Contents

• Usage
• Overall Context
• Image De �� nition and Terminology
• Items of a Processing Pipeline
• Input Data
• Command Items and Selections
• Input/Output Properties
• Substitution Rules
• Mathematical Expressions
• Adding Custom Commands
• List of Commands
• Examples of Use

Usage

gmic �� [command1 �� [arg1_1,arg1_2,..]] �� .. �� [commandN�� [argN_1,argN_2,..]]

gmic is the open-source interpreter of the G'MIC language, a scripting programming language
dedicated to the design of possibly complex image processing pipelines and operators.
It can be used to convert, manipulate, �� lter and visualize image datasets made of one or several
1D/2D or 3D multi-spectral images.

This reference documentation describes all the technical aspects of the G'MIC framework, in its
current version 3.5.2.

As a starting point, you may want to visit our detailed tutorial pages, at: https://gmic.eu/tutorial/

Overall Context

• At any time, G'MIC manages one list of numbered (and optionally named) pixel-based images,
entirely stored in computer memory (uncompressed).

• The ��rst image of the list has index 0 and is denoted by [0] . The second image of the list is
denoted by [1] , the third by [2] and so on.

• Negative indices are treated in a periodic way: [-1] refers to the last image of the list, [-2] to
the penultimate one, etc. Thus, if the list has 4 images, [1] and [-3] both designate the

second image of the list.

• A named image may be also indicated by [name] , if name uses the character set [a-zA-
Z0-9_] and does not start with a number. Image names can be set or reassigned at any moment
during the processing pipeline (see command name for this purpose).

• G'MIC de��nes a set of various commands and substitution mechanisms to allow the design of
complex pipelines and operators managing this list of images, in a very ��exible way: You can
insert or remove images in the list, rearrange image order, process images (individually or
grouped), merge image data together, display and output image �� les, etc.

• Such a pipeline can de ��ne a new custom G'MIC command (stored in a user command �� le), and
re-used afterwards as a regular command, in a larger pipeline if necessary.

Image De ��nition and Terminology

• In G'MIC, each image is modeled as a 1D, 2D, 3D or 4D array of scalar values, uniformly
discretized on a rectangular/parallelepipedic domain.

• The four dimensions of this array are respectively denoted by:

�� width , the number of image columns (size along the x-axis).

�� height , the number of image rows (size along the y-axis).

�� depth , the number of image slices (size along the z-axis). The depth is equal to 1 for
usual color or grayscale 2D images.

�� spectrum , the number of image channels (size along the c-axis). The spectrum is
respectively equal to 3 and 4 for usual RGB and RGBA color images.

• There are no hard limitations on the size of the image along each dimension. For instance, the
number of image slices or channels can be of arbitrary size within the limits of the available
memory.

• The width , height and depth of an image are considered as spatial dimensions, while the
spectrum has a multi-spectral meaning. Thus, a 4D image in G'MIC should be most often
regarded as a 3D dataset of multi-spectral voxels. Most of the G'MIC commands will stick with this
idea (e.g. by default, command blur blurs 4D images only along the three spatial xyz -axes).

• G'MIC stores all the image data as bu �� ers of float values (32 bits, value range [-3.4E38,
+3.4E38] . It performs all its image processing operations with ��oating point numbers. Each
image pixel takes then 32bits/channel (except if double-precision bu �� ers have been enabled
during the compilation of the software, in which case 64bits/channel can be the default).

• Considering float -valued pixels ensure to keep numerical precision when executing image
processing pipelines. For image input/output operations, you may want to prescribe the image
datatype to be di �� erent than float (like bool , char , int , etc.). This is possible by specifying it
as a �� le option when using I/O commands (see section Output Properties to learn more about
�� le options).

Items of a Processing Pipeline

• In G'MIC, an image processing pipeline is described as a sequence of items separated by the
space character. Such items are interpreted and executed from the left to the right. For instance,
the expression:

filename.jpg ��blur ��3,0 ��sharpen ��10�� resize ��200%,200%��output �� file_out.jpg

de��nes a valid pipeline composed of nine G'MIC items.

• Each G'MIC item is either a command , a list of command arguments , a �� lename or a special
input string .

• Escape characters '' and double quotes " can be used to de ��ne items containing spaces or other
special characters. For instance, the two strings single\ �� item and "single �� item" both
de��ne the same single item, with a space in it.

Input Data

• If a speci��ed G'MIC item appears to be an existing �� lename, the corresponding image data are
loaded and inserted at the end of the image list (which is equivalent to the use of
input �� filename).

• Special �� lenames - and -.ext stand for the standard input/output streams, optionally forced to
be in a speci ��c ext �� le format (e.g. -.jpg or -.png).

• The following special input strings may be used as G'MIC items to create and insert new images
with prescribed values, at the end of the image list:

�� [selection] or [selection]xN : Insert 1 or N copies of already existing images.
selection may represent one or several images (see section Command Items and

Selections to learn more about selections).

�� width[%],_height[%],_depth[%],_spectrum[%],_values[xN] : Insert one or N
images with speci ��ed size and values (adding % to a dimension means "percentage of the
size along the same axis" , taken from the last image [-1]). Any speci��ed dimension can
be also written as [image] , and is then set to the size (along the same axis) of the existing
speci��ed image [image] . values can be either a sequence of numbers separated by
commas , , or a mathematical expression, as e.g. in input item 256,256,1,3,[x,y,128]
which creates a 256x256 RGB color image with a spatial shading on the red and green
channels. (see section Mathematical Expressions to learn more about mathematical
expressions).

�� (v1,v2,..[:delimiter | axis_order])[xN] : Insert one or N new images from
speci��ed prescribed values. Value separator inside parentheses can be , (column
separator), ; (row separator), / (slice separator) or ^ (channel separator). For instance,
expression (1,2,3;4,5,6;7,8,9) creates a 3x3 matrix (scalar image), with values running
from 1 to 9.

�� ('string'[:delimiter])[xN] : Insert one or N new images from speci ��ed string, by
�� lling the images with the character codes composing the string. When speci ��ed,
delimiter tells about the main orientation of the image. Delimiter can be x (eq. to ,

which is the default), y (eq. to ;), z (eq. to /) or c (eq. to ^). When speci��ed delimiter is
, , ; , / or ^ , the expression is actually equivalent to ({'string'[:delimiter]})[xN]

(see section Substitution Rules for more information on the syntax).

�� 0[xN] : Insert one or N new empty images, containing no pixel data. Empty images are used
only in rare occasions.

• Input item name=value declares a new variable name , or assign a new string value to an
existing variable. Variable names must use the character set [a-zA-Z0-9_] and cannot start
with a number.

• A variable de ��nition is always local to the current command except :

�� When it starts by the underscore character _ . In that case, it becomes also accessible by any
command invoked outside the current command scope (global variable).

�� When it is de ��ned in a _shared variable_ command, a variable becomes also accessible
in the calling (parent) command. A _shared variable_ command is a command whose
name starts with __ (e.g. __foo).

• If a variable name starts with two underscores __ , the global variable is also shared among
di�� erent threads and can be read/set by commands running in parallel (see command parallel
for this purpose). Otherwise, it remains local to the thread that de ��ned it.

• Numerical variables can be updated with the use of these special operators: += (addition), -=
(subtraction), *= (multiplication), /= (division), %= (modulo), &= (bitwise and), |= (bitwise or),
^= (power), <<= and >> (bitwise left and right shifts). For instance, foo=1 foo+=3 .

• Input item name.=string appends speci ��ed string at the end of variable name .

• Input item name..=string prepends speci ��ed string at the beginning of variable name .

• Multiple variable assignments and updates are allowed, with expressions:
name1,name2,...,nameN=value or
name1,name2,...,nameN=value1,value2,...,valueN where assignment operator = can

be replaced by one of the allowed operators (e.g. +=).

• Variables usually store numbers or strings. Use command store to assign variables from image
data (and syntax input ��$variable to bring them back on the image list afterwards).

Command Items and Selections

• A G'MIC item that is not a �� lename nor a special input string designates a command most of the
time. Generally, commands perform image processing operations on one or several available
images of the list.

• Reccurent commands have two equivalent names (regular and short). For instance,
command names resize and r refer to the same image resizing action.

• A G'MIC command may have mandatory or optional arguments . Command arguments must be
speci��ed in the next item on the command line. Commas , are used to separate multiple
arguments of a single command, when required.

• The execution of a G'MIC command may be restricted only to a subset of the image list, by
appending [selection] to the command name. Examples of valid syntaxes for selection
are:

�� command[-2] : Apply command only on the penultimate image [-2] of the list.

�� command[0,1,3] : Apply command only on images [0] , [1] and [3] .

�� command[3-6] : Apply command only on images [3] to [6] (i.e, [3] , [4] , [5] and
[6]).

�� command[50%-100%] : Apply command only on the second half of the image list.

�� command[0,-4--1] : Apply command only on the ��rst image and the last four images.

�� command[0-9:3] : Apply command only on images [0] to [9] , with a step of 3 (i.e. on
images [0] , [3] , [6] and [9]).

�� command[0--1:2] : Apply command only on images of the list with even indices.

�� command[0,2-4,50%--1] : Apply command on images [0] , [2] , [3] , [4] and on the
second half of the image list.

�� command[^0,1] : Apply command on all images except the ��rst two.

�� command[name1,name2] : Apply command on named images name1 and name2 .

• Indices in selections are always sorted in increasing order, and duplicate indices are discarded.
For instance, selections [3-1,1-3] and [1,1,1,3,2] are both equivalent to [1-3] . If you
want to repeat a single command multiple times on an image, use a repeat..done loop
instead. Inverting the order of images for a command is achieved by explicitly inverting the order
of the images in the list, with command reverse[selection] .

• Command selections [-1] , [-2] and [-3] are so often used they have their own shortcuts,
respectively . , .. and For instance, command blur.. is equivalent to blur[-2] .
These shortcuts work also when specifying command arguments.

• G'MIC commands invoked without [selection] are applied on all images of the list, i.e. the
default selection is [0--1] (except for command input whose default selection is [-1]').

• Prepending a single hyphen - to a G'MIC command is allowed. This may be useful to recognize
command items more easily in a one-liner pipeline (typically invoked from a shell).

• A G'MIC command prepended with a plus sign + does not act in-place but inserts its result as
one or several new images at the end of the image list.

• There are two di �� erent types of commands that can be run by the G'MIC interpreter:

�� Built-in commands are the hard-coded functionalities in the interpreter core. They are thus
compiled as binary code and run fast, most of the time. Omitting an argument when invoking
a built-in command is not permitted, except if all following arguments are also omitted. For
instance, invoking blur 1,,1 is invalid but blur 1 is correct.

�� Custom commands , are de��ned as G'MIC pipelines of built-in or other custom commands.
They are parsed by the G'MIC interpreter, and thus run a bit slower than built-in commands.
Omitting arguments when invoking a custom command is permitted. For instance,
expressions flower �� ,,,100,,2 or flower �� , are correct.

• Most of the existing commands in G'MIC are actually de ��ned as custom commands .

• A user can easily add its own custom commands to the G'MIC interpreter (see section ��Adding
Custom Commands for more details). New built-in commands cannot be added (unless you
modify the G'MIC interpreter source code and recompile it).

Input/Output Properties

• G'MIC is able to read/write most of the classical image �� le formats, including:

�� 2D grayscale/color �� les: .png , .jpeg , .gif , .pnm , .tif , .bmp , ...

�� 3D volumetric �� les: .dcm , .hdr , .nii , .cube , .pan , .inr , .pnk , ...

�� Video �� les: .mpeg , .avi , .mp4 , .mov , .ogg , .flv , ...

�� Generic text or binary data �� les: .gmz , .cimg , .cimgz , flo , ggr , gpl , .dlm , .asc , .pfm ,
.raw , .txt , .h .

�� 3D mesh �� les: .off , .obj .

• When dealing with color images, G'MIC generally reads, writes and displays data using the usual
sRGB color space.

• When loading a .png and .tiff �� le, the bit-depth of the input image(s) is returned to the
status.

• G'MIC is able to manage 3D mesh objects that may be read from �� les or generated by G'MIC

commands. A 3D object is stored as a one-column scalar image containing the object data, in the
following order: { magic_number; sizes; vertices; primitives; colors; opacities
} . These 3D representations can be then processed as regular images (see command split3d for
accessing each of these 3D object data separately).

• Be aware that usual �� le formats may be sometimes not adapted to store all the available image
data, since G'MIC uses ��oat-valued image bu �� ers. For instance, saving an image that was initially
loaded as a 16bits/channel image, as a .jpg �� le will result in a loss of information. Use the
G'MIC-speci��c �� le extension .gmz to ensure that all data precision is preserved when saving
images.

• Sometimes, �� le options may/must be set for �� le formats:

�� Video �� les: Only sub-frames of an image sequence may be loaded, using the input
expression filename.ext,[first_frame[,last_frame[,step]]] . Set
last_frame==-1 to tell it must be the last frame of the video. Set step to 0 to force an

opened video �� le to be opened/closed. Output framerate and codec can be also set by using
the output expression filename.avi,_fps,_codec,_keep_open where keep_open can
be { 0 | 1 } . codec is a 4-char string (see http://www.fourcc.org/codecs.php) or 0 for
the default codec. keep_open tells if the output video �� le must be kept open for appending
new frames afterwards.

�� .cimg[z] �� les: Only crops and sub-images of .cimg �� les can be loaded, using the input
expressions filename.cimg,N0,N1 , filename.cimg,N0,N1,x0,x1 ,
filename.cimg,N0,N1,x0,y0,x1,y1 , filename.cimg,N0,N1,x0,y0,z0,x1,y1,z1

or filename.cimg,N0,N1,x0,y0,z0,c0,x1,y1,z1,c1 . Specifying -1 for one
coordinates stands for the maximum possible value. Output expression
filename.cimg[z][,datatype] can be used to force the output pixel type. datatype

can be { auto | bool | uint8 | int8 | uint16 | int16 | uint32 | int32 |
uint64 | int64 | float32 | float64 } .

�� .raw binary �� les: Image dimensions and input pixel type may be speci ��ed when loading
.raw �� les with input expression filename.raw[,datatype][,width]
[,height[,depth[,dim[,offset]]]]] . If no dimensions are speci ��ed, the resulting
image is a one-column vector with maximum possible height. Pixel type can also be speci ��ed
with the output expression filename.raw[,datatype] . datatype can be the same as
for .cimg[z] �� les.

�� .yuv �� les: Image dimensions must be speci ��ed when loading, and only sub-frames of an
image sequence may be loaded, using the input expression
filename.yuv,width,height[,chroma_subsampling[,first_frame[,last_frame[,step]]]
chroma_subsampling can be { 420 | 422 | 444 } . When saving, chroma subsampling

mode can be speci ��ed with output expression filename.yuv[,chroma_subsampling] .

�� .tiff �� les: Only sub-images of multi-pages ti �� �� les can be loaded, using the input
expression filename.tif,_first_frame,_last_frame,_step . Output expression
filename.tiff,_datatype,_compression,_force_multipage,_use_bigtiff can

be used to specify the output pixel type, as well as the compression method. datatype can
be the same as for .cimg[z] �� les. compression can be ��{ none (default) | lzw |
jpeg } . force_multipage can be { 0:no (default) | 1:yes } . use_bigtiff can
be { 0:no | 1:yes (default) } .

�� .pdf �� les: When loading a �� le, the rendering resolution can be speci ��ed using the input
expression filename.pdf,resolution , where resolution is an unsigned integer value.

�� .gif �� les: Animated gif �� les can be saved, using the input expression
filename.gif,fps>0,nb_loops . Specify nb_loops=0 to get an in ��nite number of

animation loops (this is the default behavior).

�� .jpeg and .webp �� les: The output quality may be speci ��ed (in %), using the output
expression filename.jpg,30 (here, to get a 30% quality output). 100 is the default.

�� .png �� les: The bit depth can be speci ��ed (8 or 16), using the output expression
filename.png,16 (here, to get a 16 bit depth output �� le). By default, G'MIC guesses the

best bit depth automatically.

�� .mnc �� les: The output header can set from another �� le, using the output expression
filename.mnc,header_template.mnc .

�� .pan , .cpp , .hpp , .c and .h �� les: The output datatype can be selected with output
expression filename[,datatype] . datatype can be the same as for .cimg[z] �� les.

�� .gmic �� les: These �� lenames are assumed to be G'MIC custom commands �� les. Loading
such a �� le will add the commands it de ��nes to the interpreter. Debug information can be
enabled/disabled by the input expression filename.gmic[,add_debug_info] where
debug_info can be { 0:false | 1:true } .

�� Inserting ext: on the beginning of a �� lename (e.g. jpg:filename) forces G'MIC to read/
write the �� le as it would have been done if it had the speci ��ed extension .ext .

• Some input/output formats and options may not be supported, depending on the con ��guration
��ags that have been set during the build of the G'MIC software.

Substitution Rules

• G'MIC items containing $ or {} are substituted before being interpreted. Use these substituting
expressions to access various data from the interpreter environment.

• $name and ${name} are both substituted by the value of the speci ��ed named variable (set
previously by the item name=value). If this variable has not been already set, the expression is
substituted by the highest positive index of the named image [name] . If no image has this
name, the expression is substituted by the value of the OS environment variable with same name
(it may be thus an empty string if it is not de ��ned).

• The following reserved variables are prede ��ned by the G'MIC interpreter:

�� $! : The current number of images in the list.

�� $> and $< : The increasing/decreasing index of the latest (currently running)
repeat...done loop. $> goes from 0 (�� rst loop iteration) to nb_iterations �� - ��1 (last

iteration). $< does the opposite.

�� $/ : The current call stack. Stack items are separated by slashes / .

�� $| : The current value (expressed in seconds) of a millisecond precision timer.

�� $^ : The current verbosity level.

�� $_cpus : The number of computation cores available on your machine.

�� $_flags : The list of enabled ��ags when G'MIC interpreter has been compiled.

�� $_host : A string telling about the host running the G'MIC interpreter (e.g. cli or gimp).

�� $_os : A string describing the running operating system.

�� $_path_rc : The path to the G'MIC folder used to store con ��guration �� les (its value is OS-
dependent).

�� $_path_user : The path to the G'MIC user �� le .gmic or user.gmic (its value is OS-
dependent).

�� $_path_commands : A list of all imported command �� les (stored as an image list).

�� $_pid : The current process identi ��er, as an integer.

�� $_pixeltype : The type of image pixels (default: float32).

�� $_prerelease : For pre-releases, the date of the pre-release as yymmdd. For stable
releases, this variable is set to 0 .

�� $_version : A 3-digits number telling about the current version of the G'MIC interpreter
��(e.g. 352).

�� $_vt100 : Set to 1 if colored text output is allowed on the console. Otherwise, set to 0 .

• $$name and $${name} are both substituted by the G'MIC script code of the speci ��ed named
custom ��command, or by an empty string if no custom command with speci ��ed name exists.

• ${"-pipeline"} is substituted by the status value after the execution of the speci ��ed G'MIC
pipeline (see command status). Expression ${} thus stands for the current status value.

• {``string} (starting with two backquotes) is substituted by a double-quoted version of the
speci��ed string.

• {/string} is substituted by the escaped version of the speci ��ed string.

• {'string'[:delimiter]} (between single quotes) is substituted by the sequence of character
codes that composes the speci ��ed string, separated by speci ��ed delimiter. Possible delimiters are
, (default), ; , / , ^ or . For instance, item {'foo'} is substituted by 102,111,111 and
{'foo :;}' by 102;111;111 .

• {image,feature[:delimiter]} is substituted by a speci ��c feature of the image [image] .
image can be either an image number or an image name. It can be also eluded, in which case,

the last image [-1] of the list is considered for the requested feature. Speci ��ed feature can
be one of:

�� b : The image basename (i.e. �� lename without the folder path nor extension).

�� f : The image folder name.

�� n : The image name or �� lename (if the image has been read from a �� le).

�� t : The text string from the image values regarded as character codes.

�� x : The image extension (i.e the characters after the last . in the image name).

�� ^ : The sequence of all image values, separated by commas , .

�� @subset : The sequence of image values corresponding to the speci ��ed subset, and
separated by commas , .

�� Any other feature is considered as a mathematical expression associated to the image
[image] and is substituted by the result of its evaluation (��oat value). For instance,

expression {0,w+h} is substituted by the sum of the width and height of the ��rst image (see
section Mathematical Expressions for more details). If a mathematical expression starts
with an underscore _ , the resulting value is truncated to a readable format. For instance,
item {_pi} is substituted by 3.14159 (while {pi} is substituted by
3.141592653589793).

�� A feature delimited by backquotes is replaced by a string whose character codes
correspond to the list of values resulting from the evaluation of the speci ��ed mathematical
expression. For instance, item {`[102,111,111]`} is substituted by foo and item
{`vector8(65)`} by AAAAAAAA.

• {*} is substituted by the visibility state of the instant display window #0 (can be { 0:closed
| 1:visible } .

• {*[index],feature1,...,featureN[:delimiter]} is substituted by a speci ��c set of
features of the instant display window #0 (or #index , if speci��ed). Requested features can
be:

�� u : screen width (actually independent on the window size).

�� v : screen height (actually independent on the window size).

�� uv : screen width*screen height.

�� d : window width (i.e. width of the window widget).

�� e : window height (i.e. height of the window widget).

�� de : window width*window height.

�� w : display width (i.e. width of the display area managed by the window).

�� h : display height (i.e. height of the display area managed by the window).

�� wh : display width*display height.

�� i : X-coordinate of the display window.

�� j : Y-coordinate of the display window.

�� f : current fullscreen state of the instant display.

�� n : current normalization type of the instant display.

�� t : window title of the instant display.

�� x : X-coordinate of the mouse position (or -1, if outside the display area).

�� y : Y-coordinate of the mouse position (or -1, if outside the display area).

�� b : state of the mouse buttons { 1:left-but. | 2:right-but. | 4:middle-but. } .

�� o : state of the mouse wheel.

�� k : decimal code of the pressed key if any, 0 otherwise.

�� c : boolean (0 or 1) telling if the instant display has been closed recently.

�� r : boolean telling if the instant display has been resized recently.

�� m: boolean telling if the instant display has been moved recently.

�� Any other feature stands for a keycode name (in capital letters), and is substituted by a
boolean describing the current key state { 0:pressed | 1:released } .

�� You can also prepend a hyphen - to a feature (that supports it) to ��ush the
corresponding event immediately after reading its state (works for keys, mouse and window
events).

• Item substitution is never performed in items between double quotes. One must break the
quotes to enable substitution if needed, as in '"3+8 kg = "{3+8}" kg"'. Using double quotes is then
a convenient way to disable the substitutions mechanism in items, when necessary.

• One can also disable the substitution mechanism on items outside double quotes, by escaping
the { , } or $ characters, as in \{3+4\}\ ��doesn't\ ��evaluate .

Mathematical Expressions

• G'MIC has an embedded mathematical parser , used to evaluate (possibly complex) math
expressions speci ��ed inside braces {} , or formulas in commands that may take one as an
argument (e.g. �� ll or eval).

• When the context allows it, a formula is evaluated for each pixel of the selected images (e.g. �� ll
or eval).

• A math expression may return or take as an argument a scalar or a vector-valued result (with a
��xed number of components).

The mathematical parser understands the following set of functions, operators and variables:

Usual math operators:

|| (logical or), && (logical and), | (bitwise or), & (bitwise and), != , == , <= , >= , < , > , <<
(left bitwise shift), >> (right bitwise shift), - , + , * , / , % (modulo), ^ (power), ! (logical not), ~
(bitwise not), ++ , -- , += , -= , *= , /= , %=, &= , |= , ^= , >> , <<= (in-place operators).

Usual math functions:

abs() , acos() , acosh() , arg() , arg0() , argkth() , argmax() , argmaxabs() ,
argmin() , argminabs() , asin() , asinh() , atan() , atan2() , atanh() , avg() ,
bool() , cbrt() , ceil() , cos() , cosh() , cut() , deg2rad() , erf() , erfinv() ,
exp() , fact() , fibo() , floor() , gamma() , gauss() , gcd() , hypot() , int() ,
isconst() , isfinite() , isnan() , isnum() , isinf() , isint() , isbool() , isexpr() ,
isfile() , isdir() , isin() , kth() , lcm() , log() , log2() , log10() , max() ,
maxabs() , med() , min() , minabs() , narg() , prod() , rad2deg() , rol() (left bit

rotation), ror() (right bit rotation), round() , sign() , sin() , sinc() , sinh() , sqrt() ,
std() , srand(_seed) , sum() , tan() , tanh() , var() , xor() .

• cov(A,B,_avgA,_avgB) estimates the covariance between vectors A and B (estimated
averages of these vectors may be speci ��ed as arguments).

• mse(A,B) returns the mean-squared error between vectors A and B .

• atan2(y,x) is the version of atan() with two arguments y and x (as in C/C++).

• perm(k,n,_with_order) computes the number of permutations of k objects from a set of n
objects.

• gauss(x,_sigma,_is_normalized) returns exp(-x^2/(2*s^2))/(is_normalized?
sqrt(2*pi*sigma^2):1) .

• cut(x,min,_max) returns x if it is in range [min,max] , or min or max otherwise.

• abscut(x,min,_max,_offset) returns cut(abs(x) + offset,min,max)*sign(x) .

• narg(a_1,...,a_N) returns the number of speci ��ed arguments (here, N).

• arg(i,a_1,..,a_N) returns the i -th argument a_i .

• isnum() , isnan() , isinf() , isint() , isbool() test the type of the given number or
expression, and return 0 (false) or 1 (true).

• isfile('path') (resp. isdir('path)) returns '0 (false) or 1 (true) whether its string
argument is a path to an existing �� le (resp. to a directory) or not.

• ispercentage(arg) returns 1 (true) or 0 (false) whether arg ends with a % or not.

• isvarname('str') returns 0 (false) or 1 (true) whether its string argument would be a valid
to name a variable or not.

• isvar(varname) returns 0 (false) or 1 (true) whether varname is an already de ��ned
variable or not.

• isin(v,a_1,...,a_n) returns 0 (false) or 1 (true) whether the ��rst argument v appears in
the set of other argument a_i .

• isint(x,_xmin,_xmax) returns 1 (true), if x is an integer in range [xmin,xmax] ,
otherwise 0 (false).

• inrange(value,m,M,include_m,include_M) returns 0 (false) or 1 (true) whether the
speci��ed value lies in range [m,M] or not (include_m and includeM tells how boundaries m
and M are considered).

• argkth() , argmin() , argmax() , argminabs() , argmaxabs()' , avg() , kth() ,
min() , max() , minabs() , maxabs() , med() , prod() , std() , sum() and var() can be

called with an arbitrary number of scalar/vector arguments.

• vargkth() , vargmin() , vargmax() , vargminabs() , vargmaxabs() , vavg() , vkth() ,
vmin() , vmax() , vminabs() , vmaxabs() , vmed() , vprod() , vstd() , vsum() and
vvar() are the versions of the previous function with vector-valued arguments.

• round(value,rounding_value,direction) returns a rounded value. direction can be {
-1:to-lowest | 0:to-nearest | 1:to-highest } .

• softmax(V,_temperature) and softmin(V,_temperature) respectively returns the
softmax and softmin of speci ��ed vector V . Default value for temperature is 1.

• softargmax(V,_temperature) and softargmin(V,_temperature) respectively returns
the softargmax and softargmin of speci ��ed vector V . Default value for temperature is 1.

• lerp(a,b,t) returns a*(1-t)+b*t .

• swap(a,b) swaps the values of the given arguments.

Prede ��ned variable names:

Variable names below are pre-de ��ned. They can be overridden though.
• l : length of the associated list of images.

• k : index of the associated image, in [0,l-1] .

• w : width of the associated image, if any (0 otherwise).

• h : height of the associated image, if any (0 otherwise).

• d : depth of the associated image, if any (0 otherwise).

• s : spectrum of the associated image, if any (0 otherwise).

• r : shared state of the associated image, if any (0 otherwise).

• wh : shortcut for width*height .

• whd : shortcut for width*height*depth .

• whds : shortcut for width*height*depth*spectrum (i.e. number of image values).

• im , iM , ia , iv , id , is , ip , ic , in : Respectively the minimum, maximum, average,
variance, standard deviation, sum, product, median value and L2-norm of the associated image, if
any (0 otherwise).

• xm , ym , zm , cm : The pixel coordinates of the minimum value in the associated image, if any (0
otherwise).

• xM , yM , zM , cM : The pixel coordinates of the maximum value in the associated image, if any
(0 otherwise).

• All these variables are considered as constant values by the math parser (for optimization
purposes) which is indeed the case most of the time. Anyway, this might not be the case, if
function resize(#ind,..) is used in the math expression. If so, it is safer to invoke functions
l() , w(_#ind) , h(_#ind) , ... s(_#ind) and in(_#ind) instead of the corresponding

named variables.

• i : current processed pixel value (i.e. value located at (x,y,z,c)) in the associated image, if any
(0 otherwise).

• iN : N-th channel value of current processed pixel (i.e. value located at (x,y,z,N) in the
associated image, if any (0 otherwise). N must be an integer in range [0,9] .

• R , G, B and A are equivalent to i0 , i1 , i2 and i3 respectively.

• I : current vector-valued processed pixel in the associated image, if any (0 otherwise). The
number of vector components is equal to the number of image channels (e.g. I = [��R,G,B ��]
for a RGB image).

• You may add #ind to any of the variable name above to retrieve the information for any
numbered image [ind] of the list (when this makes sense). For instance ia#0 denotes the
average value of the ��rst image of the list).

• x : current processed column of the associated image, if any (0 otherwise).

• y : current processed row of the associated image, if any (0 otherwise).

• z : current processed slice of the associated image, if any (0 otherwise).

• c : current processed channel of the associated image, if any (0 otherwise).

• t : thread id when an expression is evaluated with multiple threads (0 means master thread).

• n : maximum number of threads when expression is evaluated in parallel (so that t goes from
0 to n-1).

• e : value of e, i.e. 2.71828... .

• pi : value of pi, i.e. 3.1415926... .

• eps : value of machine epsilon, that is the di �� erence between 1.0 and the next value
representable by a double.

• u : a random value between [0,1] , following a uniform distribution.

• v : a random integer that is either 0 or 1 , following a uniform distribution.

• g : a random value, following a gaussian distribution of variance 1 (roughly in [-6,6]).

• interpolation : value of the default interpolation mode used when reading pixel values with
the pixel access operators (i.e. when the interpolation argument is not explicitly speci ��ed, see
below for more details on pixel access operators). Its initial default value is 0 .

• boundary : value of the default boundary conditions used when reading pixel values with the
pixel access operators (i.e. when the boundary condition argument is not explicitly speci ��ed, see
below for more details on pixel access operators). Its initial default value is 0 .

• The last image of the list is always associated to the evaluations of expressions , e.g. G'MIC
sequence

256,128 �� fill �� {w}

��will create a 256x128 image �� lled with value 256.

Vector-valued functions and operators:

The math evaluator is able to work with vector-valued elements. A math function applied on a
vector-valued argument usually returns a vector with same dimension, where each element of the
input vector has been passed to the speci ��ed function (e.g. abs([-1,2,-3]) returns [1,2,3]).

There are speci ��c functions and operators to de ��ne or compute vector-valued elements though :
• [a0,a1,...,aN-1] de��nes a N -dimensional vector with scalar coe �� cients ak .

• vectorN(a0,a1,,...,aN-1) does the same, with the ak being repeated periodically if only a
few are speci ��ed.

• vector(#N,a0,a1,,...,aN-1) does the same, and can be used for any constant expression
N .

• In previous expressions, the ak can be vectors themselves, to be concatenated into a single
vector.

• The scalar element ak of a vector X is retrieved by X[k] .

• The sub-vector [X[p],X[p+s]...X[p+s*(q-1)]] (of size q) of a vector X is retrieved by
X[p,q,s] .

• Equality/inequality comparisons between two vectors is done with operators == and != .

• Some vector-speci ��c functions can be used on vector values: cross(X,Y) (cross product),
dot(X,Y) (dot product), size(X) (vector dimension),
sort(X,_is_increasing,_nb_elts,_size_elt,_sort_index) (sorted values),
reverse(A) (reverse order of components),
map(X,P,_nb_channelsX,_nb_channelsP,_boundary_conditions) ,
shift(A,_length,_boundary_conditions) and
same(A,B,_nb_vals,_is_case_sensitive) (vector equality test).

• Function normP(u1,...,un) computes the LP-norm of the speci ��ed vector (P being a
constant or inf , as in e.g. norm1()).

• Function normp(V,_p) computes the Lp-norm of the speci ��ed vector V . Here, p can be
variable. Default value for p is 2.

• Function unitnorm(V,_p) returns a normalized version V/normp(V) of speci ��ed vector V .
Default value for p is 2.

• Function resize(A,size,_interpolation,_boundary_conditions) returns a resized
version of a vector A with speci ��ed interpolation mode. interpolation can be { -1:none
(memory content) | 0:none | 1:nearest | 2:average | 3:linear | 4:grid |
5:bicubic | 6:lanczos } , and boundary_conditions can be { 0:dirichlet |
1:neumann | 2:periodic | 3:mirror } .

• Function find(A,B,_starting_index,_search_step) returns the index where sub-vector
B appears in vector A , (or -1 if B is not contained in A). Argument A can be also replaced by

an image index #ind .

• Specifying a vector-valued math expression as an argument of a command that operates on
image values (e.g. fill) modi ��es the whole spectrum range of the processed image(s), for each
spatial coordinates (x,y,z) . The command does not loop over the c -axis in this case.

Complex-valued functions:

A 2 -dimensional vector may be seen as a complex number and used in those particular functions/
operators: ** (complex multiplication), // (complex division), ^^ (complex exponentiation), **=
(complex self-multiplication), //= (complex self-division), ^^= (complex self-exponentiation),
cabs() (complex modulus), carg() (complex argument), cconj() (complex conjugate),
cexp() (complex exponential), clog() (complex logarithm), ��ccos() (complex cosine),
csin() (complex sine), csqr() (complex square), csqrt() (complex square root), ctan()

(complex tangent), ccosh() (complex hyperpolic cosine), csinh() (complex hyperbolic sine) and
ctanh() (complex hyperbolic tangent).

Matrix-valued functions:

A MN-dimensional vector may be seen as a M x N matrix and used in those particular functions/
operators: * (matrix-vector multiplication), det(A) (determinant), diag(V) (diagonal matrix
from a vector), eig(A) (eigenvalues/eigenvectors), eye(n) (n x n identity matrix),
invert(A,_nb_colsA,_use_LU,_lambda) (matrix inverse), mul(A,B,_nb_colsB) (matrix-

matrix multiplication), rot(u,v,w,angle) (3D rotation matrix), rot(angle) (2D rotation
matrix), solve(A,B,_nb_colsB,_use_LU) (solver of linear system A.X = B),

svd(A,_nb_colsA) (singular value decomposition), trace(A) (matrix trace) and
transpose(A,nb_colsA) (matrix transpose). Argument nb_colsB may be omitted if it is equal

to 1 .

Image-valued functions:

Some functions takes vector-valued arguments that represent image data :
• Function expr(formula,_w,_h,_d,_s) outputs a vector of size w*h*d*s with values

generated from the speci ��ed formula, as if one were �� lling an image with dimensions
(w,h,d,s) .

• Function
resize(A,wA,hA,dA,sA,nwA,_nhA,_ndA,_nsA,_interpolation,_boundary_conditions,_ax,_ay,_az,_ac)

is an extended version of the resize() function. It allows to resize the vector A , seen as an
image of size (ow,oh,od,os) as a new image of size (nw,nh,nd,ns) , with speci ��ed resizing
options.

• Function
warp(A,wA,hA,dA,sA,B,wB,hB,dB,sB,_mode,_interpolation,_boundary_conditions)

returns the warped version of the image A (of size (wA,hA,dA,sA) , viewed as a vector of size
wA*hA*dA*sA) by the warping ��eld B (of size (wB,hB,dB,sB)). The resulting image has size
(wB,hB,dB,sA) . This is the math evaluator analog to command warp .

• Function index(A,P,nb_channelsP,_dithering,_map_colors) returns the indexed
version of the image A by the colormap P . This is the math evaluator analog to command
index .

• Function permute(A,wA,hA,dA,sA,permutation_string) returns a permuted version of
the image A (of size (wA,hA,dA,sA) , viewed as a vector of size wA*hA*dA*sA). This is the
math evaluator analog to command permute .

• Function mirror(A,wA,hA,dA,sA,axes_string) returns a mirrored version of the image A
(of size (wA,hA,dA,sA) , viewed as a vector of size wA*hA*dA*sA). This is the math evaluator
analog to command mirror .

• Function cumulate(A,wA,hA,dA,sA,_axes_string) returns a cumulated version of the
image A (of size (wA,hA,dA,sA) , viewed as a vector of size wA*hA*dA*sA). This is the math
evaluator analog to command cumulate .

• Function histogram(A,nb_levels,_min_value,_max_value) returns the histogram of the
vector A . This is the math evaluator analog to command histogram .

• Function equalize(A,nb_levels,_min_value,_max_value) returns the equalized version
of the vector A . This is the math evaluator analog to command equalize .

• Function normalize(A,_min_value,_max_value) returns the normalized version of the
vector A . This is the math evaluator analog to command normalize .

• mproj(S,nb_colsS,D,nb_colsD,method,max_iter,max_residual) projects a matrix S
onto a dictionary (matrix) D . This is the math evaluator analog to command mproj .

• Function noise(A,amplitude,_noise_type) returns the noisy version of the vector A . This
is the math evaluator analog to command noise .

• Function rand(#size,_min_value,_max_value,_pdf,_precision) returns the a vector of
size random values. This is the math evaluator analog to command rand .

String manipulation:

Character strings are de ��ned as vectors objects and can be then managed as is. Dedicated
functions and initializers to manage strings exist:

• ['string'] and 'string' de��ne a vector whose values are the character codes of the
speci��ed character ��string (e.g. 'foo' is equal to [��102,111,111 ��]).

• _'character' returns the (scalar) byte code of the speci ��ed character (e.g. _'A' is equal to
65).

• A special case happens for empty strings: Values of both expressions [''] and '' are 0 .

• Functions lowercase() and uppercase() return string with all string characters lowercased
or uppercased.

• Function s2v(str,_starting_index,_is_strict) parses speci ��ed string str and returns
the value contained in it.

• Function v2s(expr,_nb_digits,_siz) returns a vector of size siz which contains the
character representation of values described by expression expr . nb_digits can be {
<-1:0-padding of integers | -1:auto-reduced | 0:all | >0:max number of
digits } .

• Function echo(str1,str2,...,strN) prints the concatenation of given string arguments on
the console.

• Function string(_#siz,str1,str2,...,strN) generates a vector corresponding to the
concatenation of given string/number arguments.

Dynamic arrays:

A dynamic array is de ��ned as a one-column (or empty) image [ind] in the image list. It allows
elements to be added or removed, each element having the same dimension (which is actually the
number of channels of image [ind]). Dynamic arrays adapt their size to the number of elements
they contain.

A dynamic array can be manipulated in a math expression, with the following functions:
• da_size(_#ind) : Return the number of elements in dynamic array [ind] .

• da_back(_#ind) : Return the last element of the dynamic array [ind] .

• da_insert(_#ind,pos,elt_1,_elt_2,...,_elt_N) : Insert N new elements elt_k
starting from index pos in dynamic array [ind] .

• da_push(_#ind,elt1,_elt2,...,_eltN) : Insert N new elements elt_k at the end of
dynamic array [ind] .

• da_pop(_#ind) : Same as da_back() but also remove last element from the dynamic array
[ind] .

• da_push_heap(_#ind,elt1,_elt2,...,_eltN) and da_pop_heap(_#ind) does the same
but for a dynamic array viewed as a min-heap structure.

• da_remove(_#ind,_start,_end) : Remove elements located between indices start and
end (included) in dynamic array [ind] .

• da_freeze(_#ind) : Convert a dynamic array into a 1-column image with height
da_size(#ind) .

• The value of the k-th element of dynamic array [ind] is retrieved with i[_#ind,k] (if the
element is a scalar value), or I[_#ind,k] (if the element is a vector).

In the functions above, argument #ind may be omitted in which case it is assumed to be #-1 .

Special operators:

• ; : expression separator. The returned value is always the last encountered expression. For
instance expression 1;2;pi is evaluated as pi .

• = : variable assignment. Variables in mathematical parser can only refer to numerical values
(vectors or scalars). Variable names are case-sensitive. Use this operator in conjunction with ; to
de��ne more complex evaluable expressions, such as

t ��=��cos(x); ��3*t^2 ��+��2*t ��+��1

These variables remain local to the mathematical parser and cannot be accessed outside the
evaluated expression.
• Variables de ��ned in math parser may have a constant property, by specifying keyword const

before the variable name (e.g. 'const foo = pi/4;'). The value set to such a variable must be indeed
a constant scalar . Constant variables allows certain types of optimizations in the math JIT
compiler.

Speci �� c functions:

• addr(expr) : return the pointer address to the speci ��ed expression expr .

• o2c(_#ind,offset,_boundary_conditions) and
c2o(_#ind,x,_y,_z,_c,_boundary_conditions) : Convert image o �� set to image

coordinates and vice-versa. Argument boundary_conditions can be { 0:none | 1:return
-1 if out-of-range } .

• fill(target,expr) or fill(target,index_name,expr) �� ll the content of the speci ��ed
target (often vector-valued) using a given expression, e.g.
V��=��vector16(); �� fill(V,k,k^2 ��+��k ��+��1); . For a vector-valued target, it is basically
equivalent to: for �� (index_name ��=��0, �� index_name<size(target), ��+
+index_name, �� target[index_name] ��=��expr); .

• u(max) or u(min,max,_include_min,_include_max) : return a random value in range
0...max or min...max , following a uniform distribution. Each range extremum can be

included (default) in the distribution or not.

• v(max) or v(min,max,_include_min,_include_max) do the same but returns an integer
in speci ��ed range.

• f2ui(value) and ui2f(value) : Convert a large unsigned integer as a negative ��oating point
value (and vice-versa), so that 32bits ��oats can be used to store large integers while keeping a
unitary precision.

• i(_a,_b,_c,_d,_interpolation_type,_boundary_conditions) : return the value of the
pixel located at position (a,b,c,d) in the associated image, if any (0 otherwise).
interpolation_type can be { 0:nearest neighbor | 1:linear | 2:cubic } .
boundary_conditions can be { 0:dirichlet | 1:neumann | 2:periodic | 3:mirror

} . Omitted coordinates are replaced by their default values which are respectively x , y , z , c ,
interpolation and boundary . For instance command

fill ��0.5*(i(x+1)-i(x-1))

��will estimate the X-derivative of an image with a classical ��nite di �� erence scheme.
• j(_dx,_dy,_dz,_dc,_interpolation_type,_boundary_conditions) does the same for

the pixel located at position (x+dx,y+dy,z+dz,c+dc) (pixel access relative to the current
coordinates).

• i[offset,_boundary_conditions] returns the value of the pixel located at speci ��ed
offset in the associated image bu �� er (or 0 if o �� set is out-of-bounds).

• j[offset,_boundary_conditions] does the same for an o �� set relative to the current pixel

coordinates (x,y,z,c) .

• i(#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions) ,
j(#ind,_dx,_dy,_dz,_dc,_interpolation,_boundary_conditions) ,
i[#ind,offset,_boundary_conditions] and i[offset,_boundary_conditions] are

similar expressions used to access pixel values for any numbered image [ind] of the list.

• I/J[_#ind,offset,_boundary_conditions] and I/
J(_#ind,_x,_y,_z,_interpolation,_boundary_conditions) do the same as i/
j[_#ind,offset,_boundary_conditions] and i/
j(_#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions) but return a vector
instead of a scalar (e.g. a vector [��R,G,B ��] for a pixel at (a,b,c) in a color image).

• crop(_#ind,_x,_y,_z,_c,_dx,_dy,_dz,_dc,_boundary_conditions) returns a vector
whose values come from the cropped region of image [ind] (or from default image selected if
ind is not speci ��ed). Cropped region starts from point (x,y,z,c) and has a size of
(dx,dy,dz,dc) . Arguments for coordinates and sizes can be omitted if they are not ambiguous
(e.g. crop(#ind,x,y,dx,dy) is a valid invocation of this function).

��* crop(S,w,h,d,s,_x,_y,_z,_c,_dx,_dy,_dz,_dc,_boundary_conditions) does the
same but extracts the cropped data from a vector S , viewed as an image of size (w,h,d,s) .
• draw(_#ind,S,_x,_y,_z,_c,_dx,_dy,_dz,_dc,_opacity,_opacity_mask,_max_opacity_mask)

draws a sprite S in image [ind] (or in default image selected if ind is not speci ��ed) at
coordinates (x,y,z,c) .

• draw(D,w,h,s,d,S,_x,_y,_z,_c,_dx,_dy,_dz,_dc,_opacity,_M,_max_M) does the
same but draw the sprite S in the vector D , viewed as an image of size (w,h,d,s) .

• polygon(_#ind,nb_vertices,coords,_opacity,_color) draws a �� lled polygon in image
[ind] (or in default image selected if ind is not speci ��ed) at speci ��ed coordinates. It draws a

single line if nb_vertices is set to 2.

• polygon(_#ind,-nb_vertices,coords,_opacity,_pattern,_color) draws a outlined
polygon in image [ind] (or in default image selected if ind is not speci ��ed) at speci ��ed
coordinates and with speci ��ed line pattern. It draws a single line if nb_vertices is set to 2.

• ellipse(_#ind,xc,yc,radius1,_radius2,_angle,_opacity,_color) draws a �� lled
ellipse in image [ind] (or in default image selected if ind is not speci ��ed) with speci ��ed
coordinates.

• ellipse(_#ind,xc,yc,-radius1,-_radius2,_angle,_opacity,_pattern,_color)
draws an outlined ellipse in image [ind] (or in default image selected if ind is not speci ��ed).

• flood(_#ind,_x,_y,_z,_tolerance,_is_high_connectivity,_opacity,_color)
performs a ��ood �� ll in image [ind] (or in default image selected if ind is not speci ��ed) with
speci��ed coordinates. This is the math evaluator analog to command �� ood .

• resize(#ind,w,_h,_d,_s,_interp,_boundary_conditions,_cx,_cy,_cz,_cc) resizes
an image of the associated list with speci ��ed dimension and interpolation method. When using
this function, you should consider retrieving the (non-constant) image dimensions using the
dynamic functions w(_#ind) , h(_#ind) , d(_#ind) , s(_#ind) , wh(_#ind) , whd(_#ind)
and whds(_#ind) instead of the corresponding constant variables.

• if(condition,expr_then,_expr_else) : return value of expr_then or expr_else ,
depending on the value of condition { 0:false | other:true } . expr_else can be
omitted in which case 0 is returned if the condition does not hold. Using the ternary operator
condition?expr_then[:expr_else] gives an equivalent expression. For instance, G'MIC

commands

fill �� if(!(x%10),255,i)

��and

fill ��x%10?i:255

��both draw blank vertical lines on every 10th column of an image.
• do(expression,_condition) repeats the evaluation of expression until condition

vanishes (or until expression vanishes if no condition is speci��ed). For instance, the
expression:

if(N<2,N,n=N-1;F0=0;F1=1;do(F2=F0+F1;F0=F1;F1=F2,n=n-1))

��returns the N-th value of the Fibonacci sequence, for N>=0 (e.g., 46368 for N=24).
do(expression,condition) always evaluates the speci ��ed expression at least once, then check

for the loop condition. When done, it returns the last value of expression .
• for(init,condition,_procedure,body) �� rst evaluates the expression init , then

iteratively evaluates body (followed by procedure if speci ��ed) while condition holds (i.e.
not zero). It may happen that no iterations are done, in which case the function returns nan .
Otherwise, it returns the last value of body . For instance, the expression:

if(N<2,N,for(n=N;F0=0;F1=1,n=n-1,F2=F0+F1;F0=F1;F1=F2))

��returns the N -th value of the Fibonacci sequence, for N>=0 (e.g., 46368 for N=24).
• while(condition,expression) is exactly the same as

for(init,condition,expression) without the speci ��cation of an initializing expression.

• repeat(nb_iters,expr) or fill(nb_iters,iter_name,expr) run nb_iters iterations
of the speci ��ed expression expr , e.g.
V��=��vector16(); �� repeat(16,k,V[k] ��=��k^2 ��+��k ��+��1); . It is basically equivalent to:
for �� (iter_name ��=��0, �� iter_name<nb_iters, ��++iter_name, ��expr); .

• break() and continue() respectively breaks and continues the current running block.

• fsize('filename)' returns the size of the speci ��ed filename (or -1 if �� le does not exist).

• date(attr,'path)' returns the date attribute for the given path (�� le or directory), with attr
being { 0:year | 1:month | 2:day | 3:day of week | 4:hour | 5:minute |
6:second } , or a vector of those values.

• date(_attr) returns the speci ��ed attribute for the current (locale) date (attributes being {
0...6:same meaning as above | 7:milliseconds }).

• print(expr1,expr2,...) or print(#ind) prints the value of the speci ��ed expressions (or
image information) on the console, and returns the value of the last expression (or nan in case
of an image). Function prints(expr) also prints the string composed of the character codes
de��ned by the vector-valued expression (e.g. prints('Hello)').

• debug(expression) prints detailed debug info about the sequence of operations done by the
math parser to evaluate the expression (and returns its value).

• display(_X,_w,_h,_d,_s) or display(#ind) display the contents of the vector X (or
speci��ed image) and wait for user events. if no arguments are provided, a memory snapshot of
the math parser environment is displayed instead.

• begin(expression) and end(expression) evaluates the speci ��ed expressions only once,
respectively at the beginning and end of the evaluation procedure, and this, even when multiple
evaluations are required (e.g. in ' �� ll ">begin(foo = 0); ++foo"').

• copy(dest,src,_nb_elts,_inc_d,_inc_s,_opacity) copies an entire memory block of
nb_elts elements starting from a source value src to a speci ��ed destination dest , with

increments de ��ned by inc_d and inc_s respectively for the destination and source pointers.

• stats(_#ind) returns the statistics vector of the running image [ind] , i.e the vector

[�� im,iM,ia,iv,xm,ym,zm,cm,xM,yM,zM,cM,is,ip ��] (14 values).

• ref(expr,a) references speci ��ed expression expr as variable name a .

• unref(a,b,...) destroys references to the named variable given as arguments.

• breakpoint() inserts a possible computation breakpoint (useless with the cli interface).

• _(comment) expr just returns expression expr (useful for inserting inline comments in math
expressions).

• run('pipeline)' executes the speci ��ed G'MIC pipeline as if it was called outside the currently
evaluated expression.

• set('variable_name',A) set the G'MIC variable $variable_name with the value of
expression A . If A is a vector-valued variable, it is assumed to encode a string.

• store('variable_name',A,_w,_h,_d,_s,_is_compressed) transfers the data of vector
A as a (w,h,d,s) image to the G'MIC variable $variable_name . Thus, the data becomes

available outside the math expression (that is equivalent to using the regular command store ,
but directly in the math expression).

• get('variable_name',_size,_return_as_string) returns the value of the speci ��ed
variable, as a vector of size values, or as a scalar (if size is zero or not speci ��ed).

• name(_#ind,size) returns a vector of size size , whose values are the characters codes of
the name of image [ind] (or default image selected if ind is not speci ��ed).

• correlate(I,wI,hI,dI,sI,K,wK,hK,dK,sK,_boundary_conditions,_is_normalized,_channel_mode,_xcen
returns the correlation, unrolled as a vector, of the (wI,hI,dI,sI) -sized image I with the
(wK,hK,dK,sK) -sized kernel K (the meaning of the other arguments are the same as in
command correlate). Similar function convolve(...) is also de��ned for computing the
convolution between I and K .

User-de �� ned macros:

• Custom macro functions can be de ��ned in a math expression, using the assignment operator = ,
e.g.

foo(x,y) ��=��cos(x ��+��y); �� result ��=�� foo(1,2) ��+�� foo(2,3)

• Trying to override a built-in function (e.g. abs()) has no e�� ect.

• Overloading macros with di �� erent number of arguments is possible. Re-de ��ning a previously
de��ned macro with the same number of arguments discards its previous de ��nition.

• Macro functions are indeed processed as macros by the mathematical evaluator. You should
avoid invoking them with arguments that are themselves results of assignments or self-
operations. For instance,

foo(x) ��=��x ��+��x; ��z ��=��0; �� foo(++z)

��returns 4 rather than expected value 2 .
• When substituted, macro arguments are placed inside parentheses, except if a number sign # is

located just before or after the argument name. For instance, expression

foo(x,y) ��=��x*y; �� foo(1+2,3)

��returns 9 (being substituted as (1+2)*(3)), while expression

foo(x,y) ��=��x#*y#; �� foo(1+2,3)

��returns 7 (being substituted as 1+2*3).
• Number signs appearing between macro arguments function actually count for empty

separators. They may be used to force the substitution of macro arguments in unusual places,
e.g. as in

str(N) ��=�� ['I �� like ��N#'];

• Macros with variadic arguments can be de ��ned, by specifying a single argument name followed
by For instance,

foo(args...) ��=��sum([��args ��]^2);

��de��nes a macro that returns the sum of its squared arguments, so foo(1,2,3) returns 14 and
foo(4,5) returns 41 .

Multi-threaded and in-place evaluation:

• If your image data are large enough and you have several CPUs available, it is likely that the math
expression passed to a fill , eval or input commands is evaluated in parallel, using
multiple computation threads.

• Starting an expression with : or * forces the evaluations required for an image to be run in
parallel, even if the amount of data to process is small (beware, it may be slower to evaluate in
this case!). Specify : (rather than *) to avoid possible image copy done before evaluating the
expression (this saves memory, but do this only if you are sure this step is not required!)

• Expression starting with + are evaluated in a single-threaded way, with possible image copy.

• If the speci ��ed expression starts with > or < , the pixel access operators i() , i[] , j() and
j[] return values of the image being currently modi ��ed, in forward (>) or backward (<) order.

The multi-threading evaluation of the expression is disabled in this case.

• Function critical(expr) forces the execution of the given expression in a single thread at a
time.

• begin_t(expr) and end_t(expr) evaluates the speci ��ed expression once for each running
thread (so possibly several times) at the beginning and the end of the evaluation procedure.

• merge(variable,operator) tells to merge the local variable value computed by threads, with
the speci ��ed operator, when all threads have ��nished computing.

• Expressions i(_#ind,x,_y,_z,_c)=value , j(_#ind,x,_y,_z,_c)=value ,
i[_#ind,offset]=value and j[_#ind,offset]=value set a pixel value at a di �� erent

location than the running one in the image [ind] (or in the associated image if argument #ind
is omitted), either with global coordinates/o �� sets (with i(...) and i[...]), or relatively to
the current position (x,y,z,c) (with j(...) and j[...]). These expressions always return
value .

Adding Custom Commands

• New custom commands can be added by the user, through the use of G'MIC custom commands
�� les .

• A command �� le is a simple text �� le, where each line starts either by

command_name:��command_definition

��or

command_definition �� (continuation)

• At startup, G'MIC automatically includes user's command �� le $HOME/.gmic (on Unix) or
%USERPROFILE%\user.gmic (on Windows). The CLI tool gmic automatically runs the

command cli_start if de ��ned.

• Custom command names must use character set [a-zA-Z0-9_] and cannot start with a
number.

• Any #��comment expression found in a custom commands �� le is discarded by the G'MIC parser,
wherever it is located in a line.

• In a custom command, the following $-expressions are recognized and substituted:

�� $* is substituted by a verbatim copy of the speci ��ed string of arguments (do not include
arguments set to default values).

�� $"*" is substituted by the sequence of speci ��ed arguments, separated by commas , , each
being double-quoted (include arguments set to default values).

�� $# is substituted by the maximum index of known arguments (either speci ��ed by the user
or set to a default value in the custom command).

�� $[] is substituted by the list of selected image indices that have been speci ��ed in the
command invocation.

�� $? is substituted by a printable version of $[] to be used in command descriptions.

�� $i and ${i} are both substituted by the i -th speci ��ed argument. Negative indices such as
${-j} are allowed and refer to the j -th latest argument. $0 is substituted by the custom

command name.

�� ${i=default} is substituted by the value of $i (if de��ned) or by its new value set to
default otherwise (default may be a $-expression as well).

�� ${subset} is substituted by the argument values (separated by commas ,) of a speci��ed
argument subset. For instance expression ${2--2} is substituted by all speci ��ed command
arguments except the ��rst and the last one. Expression ${^0} is then substituted by all
arguments of the invoked command (eq. to $* if all arguments have been indeed speci ��ed).

�� $=var is substituted by the set of instructions that will assign each argument $i to the
named variable var$i (for i in [0...$#] . This is particularly useful when a custom
command want to manage variable numbers of arguments. Variables names must use
character set [a-zA-Z0-9_] and cannot start with a number.

• These particular $-expressions for custom commands are always substituted , even in
double-quoted items or when the dollar sign $ is escaped with a backslash $. To avoid
substitution, place an empty double quoted string just after the $ (as in $""1).

• Specifying arguments may be skipped when invoking a custom command, by replacing them by
commas , as in expression

flower �� ,,3

��Omitted arguments are set to their default values, which must be thus explicitly de ��ned in the code
of the corresponding custom command (using default argument expressions as ${1=default}).
• If one numbered argument required by a custom command misses a value, an error is thrown by

the G'MIC interpreter.

• It is possible to specialize the invocation of a +command by de��ning it as

+command_name: ��command_definition

• A +-specialization takes priority over the regular command de ��nition when the command is
invoked with a prepended + .

• When only a +-specialization of a command is de ��ned, invoking command is actually equivalent
to +command.

List of Commands

All available G'MIC commands are listed below, by categories. An argument speci ��ed between []
or starting by _ is optional except when standing for an existing image [image] , where image
can be either an index number or an image name. In this case, the [] characters are mandatory
when writing the item. Note that all images that serve as illustrations in this reference
documentation are normalized in range [0,255] before being displayed. You may need to do this
explicitly (command normalize ��0,255) if you want to save and view images with the same aspect
than those illustrated in the example codes.
The examples accompanying this List of Commands illustrate the use of the G'MIC language
and are written as they would appear in a custom command. While some examples may work if
entered directly at a shell prompt, there is no guarantee. No attempt has been made to escape
special characters in these examples, which many shells reserve.

Categories:

• Global Options
• Input / Output
• List Manipulation
• Mathematical Operators
• Values Manipulation
• Colors
• Geometry Manipulation
• Filtering
• Features Extraction
• Image Drawing
• Matrix Computation
• 3D Meshes
• Flow Control
• Neural Networks
• Arrays, Tiles and Frames
• Artistic
• Warpings
• Degradations
• Blending and Fading
• Image Sequences and Videos
• Convenience Functions
• Other Interactive Commands
• Command Shortcuts

Global Options:

debug help version

Input / Output:

camera command
compress_to_

keypoints
cursor delete

display display0 display_array
display_camer

a
display_clut

display_�� t display_graph
display_histog

ram
display_param

etric
display_polar

display_quiver display_rgba
display_tensor

s
display_voxels

3d
display_warp

echo echo_�� le font font2gmz function1d

identity input input_565 input_bytes input_csv

input_cube input_ ��o input_glob input_gpl input_cached

input_normali
zed

input_obj input_text lorem network

output output_565 output_cube output_ ��o output_ggr

output_gmz output_obj output_text outputn outputp

outputw outputx parse_cli parse_gmd gmd2html

gmd2ascii parse_gui pass plot poincare_disk

portrait print
random_patte

rn
screen select

serialize shape_circle shape_cupid
shape_diamo

nd
shape_dragon

shape_fern shape_gear shape_heart
shape_menge

r
shape_mosely

shape_polygo
n

shape_rays
shape_snow��

ake
shape_star shared

sample srand store testimage2d uncommand

uniform_distri
bution

unserializ
e

update verbose wait

warn window

List Manipulation:

keep keep_named move name remove

remove_duplic
ates

remove_empt
y

remove_name
d

reverse sort_list

Mathematical Operators:

abs abscut acos acosh add

and argmax argmaxabs argmin argminabs

asin asinh atan atan2 atanh

bsl bsr cos cosh cut

deg2rad div eq erf exp

ge gt isinf isnan le

lt log log10 log2 max

maxabs mdiv med min minabs

mod mmul mul neq or

pow rad2deg rol ror sign

sin sinc sinh softmax softmin

sqr sqrt sub tan tanh

xor

Values Manipulation:

apply_curve apply_gamma
balance_gam

ma
cast

complex2pola
r

compress_clut
compress_hu

�� man
compress_rle cumulate

decompress_c
lut

decompress_f
rom_keypoint

s

decompress_h
u�� man

decompress_rl
e

discard eigen2tensor

endian equalize fill index inrange

map mix_channels negate noise_perlin
noise_poisson

disk

normp norm1 norm2 normalize normalize_l2

normalize_su
m

orientation oneminus otsu
polar2comple

x

quantize quantize_area rand rand_sum replace

replace_inf
replace_infna

n
replace_nan replace_seq replace_str

round roundify set threshold vector2tensor

Colors:

adjust_colors
apply_channel

s
autoindex bayer2rgb clut

clut2hald hald2clut cmy2rgb cmyk2rgb colorblind

colormap
compose_cha

nnels
count_colors deltaE direction2rgb

ditheredbw �� ll_color gradient2rgb hcy2rgb hsi2rgb

hsi82rgb hsl2rgb hsl82rgb hsv2rgb hsv82rgb

int2rgb ipremula jzazbz2rgb jzazbz2xyz lab2lch

lab2rgb lab2srgb lab82srgb lab2xyz lab82rgb

lch2lab lch2rgb lch82rgb luminance lightness

lut_contrast map_clut
match_histogr

am
match_icp match_pca

match_rgb mix_rgb oklab2rgb palette premula

pseudogray random_clut random_clut replace_color retinex

rgb2bayer rgb2cmy rgb2cmyk rgb2hcy rgb2hsi

rgb2hsi8 rgb2hsl rgb2hsl8 rgb2hsv rgb2hsv8

rgb2int rgb2jzazbz rgb2lab rgb2lab8 rgb2lch

rgb2lch8 rgb2luv rgb2oklab rgb2ryb rgb2srgb

rgb2xyz rgb2xyz8 rgb2yiq rgb2yiq8 rgb2ycbcr

rgb2yuv rgb2yuv8
remove_opaci

ty
ryb2rgb select_color

sepia solarize split_colors split_opacity split_vector

srgb2lab srgb2lab8 srgb2rgb to_a to_color

to_colormode to_gray to_graya
to_pseudogra

y
to_rgb

to_rgba to_automode xyz2jzazbz xyz2lab xyz2rgb

xyz82rgb ycbcr2rgb yiq2rgb yiq82rgb yuv2rgb

yuv82rgb

Geometry Manipulation:

append append_tiles apply_scales autocrop
autocrop_com

ponents

autocrop_coor
ds

autocrop_seq channels columns crop

diagonal elevate expand extract extract_region

montage mirror permute rescale2d rescale3d

resize
resize_as_ima

ge
resize_mn resize_pow2 rotate

rotate_tileable rows scale2x scale2x_cnn scale3x

scale_dcci2x seamcarve shift shrink slices

sort split split_tiles undistort unroll

upscale_smart volumetric2d

Filtering:

bandpass bilateral blur blur_angular blur_bloom

blur_linear blur_radial blur_selective boxfilter bump2normal

closing closing_circ compose_freq convolve convolve_�� t

correlate
cross_correlati

on
curvature dct deblur

deblur_goldm
einel

deblur_richar
dsonlucy

deconvolve_ �� t deinterlace denoise

denoise_haar denoise_cnn
denoise_patch

pca
deriche dilate

dilate_circ dilate_oct
dilate_thresho

ld
divergence dog

di�� usiontenso
rs

edges erode erode_circ erode_oct

erode_thresho
ld

fft gradient
gradient_nor

m
gradient_orien

tation

guided haar heat_ ��ow hessian idct

iee ifft ihaar ilaplacian inn

inpaint inpaint_pde inpaint_ ��ow inpaint_holes
inpaint_morp

ho

inpaint_match
patch

kuwahara laplacian lic map_tones

map_tones_fa
st

meancurvatur
e_��ow

median merge_alpha nlmeans

nlmeans_core
normalize_loc

al

normalized_cr
oss_correlatio

n
opening opening_circ

percentile
peronamalik_

��ow
phase_correla

tion
pde_��ow

periodize_pois
son

rbf red_eye
remove_hotpi

xels
remove_pixels

rolling_guidan
ce

sharpen
sharpen_alph

a
smooth split_freq solve_poisson

split_alpha split_details
structuretens

ors
solidify syntexturize

syntexturize_
matchpatch

tv_��ow unsharp
unsharp_octa

ve
vanvliet

voronoi
watermark_fo

urier
watershed

Features Extraction:

area area_fg at_line at_quadrangle barycenter

betti canny delaunay detect_skin
displaceme

nt

distance edgels �� tpolar histogram
histogram_ma

sked

histogram_nd
histogram_cu

mul
histogram_poi

ntwise
hough hu �� man_tree

i�� tpolar img2patches isophotes label label_fg

laar max_patch min_patch minimal_path mse

mse_matrix patches2img patches matchpatch
matchpatch_al

t

plot2value pointcloud psnr psnr_matrix
segment_wate

rshed

shape2bump skeleton slic ssd_patch ssim

ssim_matrix thinning tones
topographic_

map
tsp

variance_patc
h

Image Drawing:

arrow axes ball chessboard cie1931

circle close_binary curve ellipse flood

gaussian graph grid image imagealpha

line line_aa spline thickline thickspline

mandelbrot marble maze maze_mask
newton_fracta

l

object3d pack_sprites piechart plasma point

polka_dots polygon quiver rectangle rorschach

sierpinski spiralbw
tetraedron_sh

ade
text text_outline

triangle_shade truchet turbulence yinyang

Matrix Computation:

dijkstra eigen eye �� tsamples invert

meigen mproj orthogonalize
poweriteratio

n
solve

svd transpose trisolve

3D Meshes:

add3d animate3d
apply_camera

3d
apply_matrix3

d
array3d

arrow3d axes3d
boundingbox3

d
box3d center3d

chainring3d circle3d circles3d color3d colorcube3d

colorize3d cone3d cubes3d cup3d curve3d

cylinder3d delaunay3d distribution3d div3d double3d

elevation3d empty3d
extract_textur

es3d
extrude3d focale3d

fov3d gaussians3d gmic3d gyroid3d histogram3d

image6cube3
d

imageblocks3
d

imagecube3d imageplane3d
imagepyramid

3d

imagerubik3d
imagesphere3

d
isoline3d

isosurface
3d

label3d

label_points3d lathe3d light3d line3d lines3d

lissajous3d mode3d moded3d mul3d normalize3d

opacity3d parametric3d pca_patch3d plane3d point3d

pointcloud3d pose3d primitives3d projections3d pyramid3d

quadrangle3d random3d reverse3d rotate3d rotation3d

sierpinski3d size3d skeleton3d snapshot3d specl3d

specs3d sphere3d spherical3d spline3d split3d

sprite3d sprites3d star3d
streamline

3d
sub3d

subdivide3d
superformula

3d
surfels3d tensors3d

text_pointclou
d3d

text3d texturize3d torus3d triangle3d volume3d

voxelize3d weird3d

Flow Control:

apply_parallel
apply_parallel

_channels
apply_parallel

_overlap
apply_tiles apply_timeout

check check3d continue break do

done elif else fi error

eval exec exec_out for foreach

if local noarg onfail parallel

progress quit repeat return rprogress

run skip status while

Neural Networks:

nn_lib nn_add nn_append nn_avgpool2d nn_avgpool3d

nn_check_laye
r

nn_clone nn_conv2d nn_conv2dnl nn_conv2dnnl

nn_conv3d nn_conv3dnl nn_conv3dnnl nn_crop nn_distance

nn_div nn_dropout nn_fc nn_fcnl nn_fcnnl

nn_init nn_input nn_load nn_loss_add
nn_loss_binar
y_crossentrop

y

nn_loss_cross
entropy

nn_loss_mse
nn_loss_norm

p

nn_loss_softm
ax_crossentro

py

nn_maxpool2
d

nn_maxpool3
d

nn_mul nn_nl nn_normalize
nn_patchdow

n2d

nn_patchdow
n3d

nn_patchup2d nn_patchup3d nn_print nn_rename

nn_resconv2d
nl

nn_resconv3d
nl

nn_resfcnl nn_reshape nn_resize

nn_run nn_save nn_select nn_size nn_split

nn_store nn_sub nn_trainer

Arrays, Tiles and Frames:

array array_fade array_mirror array_random frame

frame_blur frame_cube frame_fuzzy
frame_paintin

g
frame_pattern

frame_round
frame_seamle

ss
img2ascii imagegrid

imagegrid_hex
agonal

imagegrid_tria
ngular

map_sprites pack puzzle rotate_tiles

shift_tiles taquin tunnel

Artistic:

box �� tting brushify cartoon color_ellipses cubism

draw_whirl drop_shadow drop_shadow ellipsionism ��re_edges

fractalize glow halftone hardsketchbw hearts

houghsketchb
w

lightrays light_relief linify mosaic

old_photo pencilbw pixelsort polaroid polygonize

poster_edges poster_hope rodilius sketchbw sponge

stained_glass stars stencil stencilbw stylize

tetris warhol weave whirls

Warpings:

deform
euclidean2pol

ar

equirectangul
ar2nadirzenit

h
��sheye ��ower

kaleidoscope map_sphere
nadirzenith2e
quirectangular

polar2euclide
an

raindrops

ripple rotoidoscope spherize symmetrize
transform_pol

ar

twirl warp warp_patch
warp_perspec

tive
warp_rbf

warp_seamles
s

water wave wind zoom

Degradations:

cracks light_patch noise noise_hurl pixelize

scanlines shade_stripes shadow_patch shu �� e spread

stripes_y
texturize_canv

as
texturize_pap

er
vignette

watermark_vis
ible

Blending and Fading:

blend nblend blend_edges blend_fade blend_median

blend_seamle
ss

fade_diamond fade_linear fade_radial fade_x

fade_y fade_z sub_alpha

Image Sequences and Videos:

animate apply_camera apply_ �� les apply_video average_ �� les

average_video fade_ �� les fade_video �� les2video median_ �� les

median_video morph morph_ �� les morph_rbf morph_video

register_nonri
gid

register_rigid transition transition3d video2 �� les

Convenience Functions:

add_copymar
k

alert arg arg0 arg2img

arg2var
average_vecto

rs
base642img base642uint8 basename

bin bin2dec cat color2name
covariance_ve

ctors

da_freeze date dec dec2str dec2bin

dec2hex dec2oct ��bonacci �� le_mv �� lename

�� lename_rand
�� lename_date

d
files �� les2img �� tratio_wh

�� tscreen fontchart fps hex hex2dec

hex2img hex2str img2base64 img2hex img2str

img2text is_mesh3d is_change is_half is_ext

is_image_arg is_pattern
is_video�� lena

me
is_macos is_windows

lof math_lib mad max_w max_h

max_d max_s max_wh max_whd max_whds

median_vecto
rs

min_w min_h min_d min_s

min_wh min_whd min_whds name2color named

narg
normalize_ �� le

name
oct oct2dec padint

path_cache
path_cached_

�� le
path_current path_gimp path_tmp

remove_copy
mark

reset rgb rgba shell_cols

size_value std_noise str strbu �� er str2hex

strcapitalize strcontains strclut strlen strreplace

strlowercase struppercase strvar strcasevar strver

tic time toc uint82base64

Other Interactive Commands:

demos x_2048 x_blobs x_bouncing x_color_curves

x_colorize x_connect4 x_crop x_cut x_ ��re

x_��reworks x_ ��sheye x_fourier x_grab_color x_hanoi

x_histogram x_hough x_jawbreaker x_landscape x_life

x_light x_mandelbrot x_mask_color x_metaballs3d
x_minesweep

er

x_minimal_pat
h

x_morph x_pacman x_paint x_plasma

x_quantize_rg
b

x_re��ection3d x_rubber3d x_segment x_select_color

x_select_functi
on1d

x_select_palett
e

x_shadebobs x_spline x_star ��eld3d

x_tetris x_threshold x_tictactoe x_tixy x_warp

x_waves x_whirl

Command Shortcuts:

Shortcut name
Equivalent command

name

h help

m command

d display

d0 display0

da display_array

dc display_camera

dclut display_clut

d�� t display_�� t

dg display_graph

dh display_histogram

dq display_quiver

drgba display_rgba

dt display_tensors

dv3d display_voxels3d

dw display_warp

e echo

i input

ib input_bytes

ig input_glob

in input_normalized

it input_text

o output

ot output_text

on outputn

op outputp

ow outputw

ox outputx

p print

sh shared

sp sample

um uncommand

up update

v verbose

w window

k keep

kn keep_named

mv move

nm name

=> name

rm remove

rmn remove_named

rv reverse

+ add

& and

<< bsl

>> bsr

c cut

/ div

== eq

>= ge

> gt

<= le

< lt

m/ mdiv

% mod

m* mmul

* mul

!= neq

| or

^ pow

- sub

f fill

ir inrange

norm norm2

n normalize

= set

ac apply_channels

fc �� ll_color

a append

z crop

rs rescale2d

rs3d rescale3d

r resize

ri resize_as_image

s split

y unroll

b blur

g gradient

j image

ja imagealpha

j3d object3d

t text

to text_outline

+3d add3d

c3d center3d

col3d color3d

/3d div3d

db3d double3d

f3d focale3d

l3d light3d

m3d mode3d

md3d moded3d

*3d mul3d

n3d normalize3d

o3d opacity3d

p3d primitives3d

rv3d reverse3d

r3d rotate3d

sl3d specl3d

ss3d specs3d

s3d split3d

-3d sub3d

t3d texturize3d

ap apply_parallel

apc apply_parallel_channels

apo apply_parallel_overlap

at apply_tiles

x exec

xo exec_out

l local

q quit

u status

nmd named

xz x_crop

Examples of Use

gmic is a generic image processing tool which can be used in a wide variety of situations. The few
examples below illustrate possible uses of this tool:

View a list of images:

$��gmic �� file1.bmp �� file2.jpeg

Convert an image �� le:

$��gmic �� input.bmp ��output ��output.jpg

Create a volumetric image from a movie sequence:

$��gmic �� input.mpg ��append ��z ��output ��output.hdr

Compute image gradient norm:

$��gmic �� input.bmp ��gradient_norm

Denoise a color image:

$��gmic �� image.jpg ��denoise ��30,10 ��output ��denoised.jpg

Compose two images using overlay layer blending:

$��gmic �� image1.jpg �� image2.jpg ��blend ��overlay ��output ��blended.jpg

Evaluate a mathematical expression:

$��gmic ��echo �� "cos(pi/4)^2+sin(pi/4)^2={cos(pi/4)^2+sin(pi/4)^2}"

Plot a 2D function:

$��gmic ��1000,1,1,2 �� fill �� "X=3*(x-500)/500;X^2*sin(3*X^2)+(!c?
u(0,-1):cos(X*10))" ��plot

Plot a 3D elevated function in random colors:

$��gmic ��128,128,1,3,"u(0,255)" ��plasma ��10,3 ��blur ��4��sharpen ��10000 ��n��0,255 ��elevation3d[-1] ��
64)/6;Y=(y-64)/6;100*exp(-(X^2+Y^2)/30)*abs(cos(X)*sin(Y))'"

Plot the isosurface of a 3D volume:

$��gmic ��mode3d��5��moded3d��5��double3d ��0�� isosurface3d �� "'x^2+y^2+abs(z)^abs(4*cos(x*y*z*3))'",3

Render a G'MIC 3D logo:

$��gmic ��0�� text ��G\'MIC,0,0,53,1,1,1,1 ��expand ��xy,10 ��blur ��1��normalize ��0,100 ��+plasma �� �� �� �� ��

Generate a 3D ring of torii:

$��gmic �� repeat ��20�� torus3d ��15,2 ��color3d[-1] �� "{u(60,255)},{u(60,255)},
{u(60,255)}" �� *3d[-1] ��0.5,1 �� if �� "{$>%2}" �� rotate3d[-1] ��0,1,0,90 �� fi ��add3d[-1] ��70��add3d �� ��

Create a vase from a 3D isosurface:

$��gmic ��moded3d��4�� isosurface3d �� "'x^2+2*abs(y/2)*sin(2*y)^2+z^2-
3',0" ��sphere3d ��1.5 ��sub3d[-1] ��0,5 ��plane3d ��15,15 �� rotate3d[-1] ��1,0,0,90 ��center3d[-1] �� ��

Launch a set of interactive demos:

$��gmic ��demos

abs Built-in command

No arguments

Description:

Compute the pointwise absolute values of selected images.

Examples of use:

•��Example #1

image.jpg +sub {ia} abs[-1]

•��Example #2

300,1,1,1,'cos(20*x/w)' +abs display_graph 400,300

abscut Built-in command

Arguments:

Arguments:
• min,_max,_offset

Description:

Cut the absolute values of pixel values in selected images, with speci ��ed range.

For each value i of the selected images, compute cut(abs(i) + offset,min,max)*sign(i) .
Thus, it only clamp/shift the absolute value of each pixel value while keeping its sign unchanged.

Default values:

max=inf and offset=0 .

Example of use:

300,1,1,1,'cos(20*x/w)' +abscut 0,0.5 append c display_graph 400,300

acos Built-in command

No arguments

Description:

Compute the pointwise arccosine of selected images.

This command has a tutorial page .

Examples of use:

•��Example #1

image.jpg +normalize -1,1 acos[-1]

•��Example #2

300,1,1,1,'cut(x/w+0.1*u,0,1)' +acos display_graph 400,300

acosh Built-in command

No arguments

Description:

Compute the pointwise hyperbolic arccosine of selected images.

add Built-in command

Arguments:

• value[%] ������ or
• [image] ������ or
• 'formula' ������ or
• (no arg)

Description:

Add speci ��ed value, image or mathematical expression to selected images, or compute the
pointwise sum of selected images.

(equivalent to shortcut command +).

Examples of use:

•��Example #1

image.jpg +add 30% cut 0,255

•��Example #2

image.jpg +blur 5 normalize 0,255 add[1] [0]

•��Example #3

image.jpg add '80*cos(80*(x/w-0.5)*(y/w-0.5)+c)' cut 0,255

•��Example #4

image.jpg repeat 9 { +rotate[0] {$>*36},1,0,50%,50% } add div 10

add3d Built-in command

Arguments:

• tx,_ty,_tz ������ or
• [object3d] ������ or
• (no arg)

Description:

Shift selected 3D objects with speci ��ed displacement vector, or merge them with speci ��ed

3D object, or merge all selected 3D objects together.

(equivalent to shortcut command +3d).

Default values:

ty=tz=0 .

Examples of use:

•��Example #1

sphere3d 10 repeat 5 { +add3d[-1] 10,{u(-10,10)},0 color3d[-1] ${-
rgb} } add3d

•��Example #2

repeat 20 { torus3d 15,2 color3d[-1] ${-rgb} mul3d[-1] 0.5,1 if $>%2

rotate3d[-1] 0,1,0,90 fi add3d[-1] 70 add3d rotate3d[-1] 0,0,1,18 }
double3d 0

add_copymark

No arguments

Description:

Add copymark su �� x in names of selected images.

adjust_colors

Arguments:

• -100<=_brightness<=100,-100<=_contrast<=100,-100<=_gamma<=100,-100<=_hue_shift<=100,-100<=_sa

Description:

Perform a global adjustment of colors on selected images.

Range of correct image values are considered to be in [value_min,value_max] (e.g. [0,255]).
If value_min==value_max==0 , value range is estimated from min/max values of selected images.
Processed images have pixel values constrained in [value_min,value_max].

Default values:

brightness=0 , contrast=0 , gamma=0, hue_shift=0 , saturation=0 ,
value_min=value_max=0 .

Example of use:

image.jpg +adjust_colors 0,30,0,0,30

alert

Arguments:

• _title,_message,_label_button1,_label_button2,...

Description:

Display an alert box and wait for user's choice.

If a single image is in the selection, it is used as an icon for the alert box.

Default values:

title=[G'MIC Alert] and 'message=This is an alert box.'.

and Built-in command

Arguments:

• value[%] ������ or
• [image] ������ or
• 'formula' ������ or
• (no arg)

Description:

Compute the bitwise AND of selected images with speci ��ed value, image or mathematical
expression, or compute the pointwise sequential bitwise AND of selected images.

(equivalent to shortcut command &).

Examples of use:

•��Example #1

image.jpg and {128+64}

•��Example #2

image.jpg +mirror x and

animate

Arguments:

• filter_name,"param1_start,...,paramN_start","param1_end,...,paramN_end",nb_frames>=0,_output_
0 | 1 },_output_filename ������ or

• delay>0,_back and forth={ 0 | 1 }

Description:

Animate �� lter from starting parameters to ending parameters or animate selected images

in a display window.

Default values:

delay=30 .

Example of use:

image.jpg animate flower,"0,3","20,8",9

animate3d

Arguments:

• nb_frames>0,_step_angle_x,_step_angle_y,_step_angle_z,_zoom_factor,0<=_fake_shadow_level<=100

Description:

Generate 3D animation frames of rotating 3D objects.

Frames are stacked along the z-axis (volumetric image).
Frame size is the same as the size of the [background] image (or 800x800 if no background
speci��ed).

Default values:

step_angle_x=0 , step_angle_y=5 , step_angle_z=0 , zoom_factor=1 ,
fake_shadow_level=50 and background=(undefined) .

append Built-in command

Arguments:

• [image],axis,_centering ������ or
• axis,_centering

Description:

Append speci ��ed image to selected images, or all selected images together, along speci ��ed axis.

(equivalent to shortcut command a).

axis can be { x | y | z | c } .
Usual centering values are { 0:left-justified | 0.5:centered | 1:right-justified
} .

Default values:

centering=0 .

Examples of use:

•��Example #1

image.jpg split y,10 reverse append y

•��Example #2

image.jpg repeat 5 { +rows[0] 0,{10+18*$>}% } remove[0] append x,0.5

•��Example #3

image.jpg append[0] [0],y

append_tiles

Arguments:

• _M>=0,_N>=0,0<=_centering_x<=1,0<=_centering_y<=1

Description:

Append MxN selected tiles as new images.

If N is set to 0, number of rows is estimated automatically.
If M is set to 0, number of columns is estimated automatically.
If M and N are both set to 0 , auto-mode is used.
If M or N is set to 0, only a single image is produced.
centering_x and centering_y tells about the centering of tiles when they have di �� erent sizes.

Default values:

M=0, N=0 , centering_x=centering_y=0.5 .

Example of use:

image.jpg split xy,4 append_tiles ,

apply_camera

Arguments:

• _"command",_camera_index>=0,_skip_frames>=0,_output_filename

Description:

Apply speci ��ed command on live camera stream, and display it on display window [0].

This command requires features from the OpenCV library (not enabled in G'MIC by default).

Default values:

command="" , camera_index=0 (default camera), skip_frames=0 and
output_filename="" .

apply_camera3d

Arguments:

• pos_x,pos_y,pos_z,target_x,target_y,target_z,up_x,up_y,up_z

Description:

Apply 3D camera matrix to selected 3D objects.

Default values:

target_x=0 , target_y=0 , target_z=0 , up_x=0 , up_y=-1 and up_z=0 .

