
A Fast Spatial Patch Blending Algorithm for Artefact Reduction in
Pattern-based Image Inpainting

Maxime Daisy, David Tschumperlé, Olivier Lézoray ∗

GREYC Laboratory (CNRS UMR 6072), Image Team, 6 Bd Maréchal Juin, 14050 Caen/France

Figure 1: Illustration of our proposed spatial patch blending algorithm for image inpainting. From left to right : color image with area to
reconstruct, reconstruction result with the inpainting algorithm from [Criminisi et al. 2004], our reconstruction result.

Abstract

We propose a fast and generic spatial patch blending technique that
can be embedded within any kind of pattern-based inpainting algo-
rithm. This extends the works of [Daisy et al. 2013] on the visual
enhancement of inpainting results. We optimize this blending algo-
rithm so that the processing time is roughly divided by a factor ten,
without any loss of perceived quality. Moreover, we provide a free
and simple-to-use software to make this easily reproducible.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation— [I.3.4]: Computer Graphics—Graphics Utilities I.4.4
[Image Processing and Computer Vision]: Restoration— [I.4.9]:
Image Processing and Computer Vision—Applications

Keywords: inpainting, spatial, patch, blending, patch-based

1 Introduction

Filling unkown or removing undesired contents from images,
known as image inpainting, is a widely used tool today. Movie
producers for example, use it to remove microphones or scratches
from new and older movie sequences. As this kind of reconstruc-
tion tool is employed by users that want their images to look more
realistic, it must obviously not damage the perceptual and visual
quality of the processed images. In the state of the art, there mainly
exist two kinds of inpainting methods. Geometry-based methods
[Masnou and Morel 1998; Bertalmio et al. 2000; Tschumperlé and
Deriche 2005] provide techniques to propagate image structures by
extrapolating the local geometry. Unfortunately, these methods are
often unable to synthesize non-local structures like textures. On the
contrary, in pattern-based methods [Criminisi et al. 2004; Le Meur

∗e-mails:
{Maxime.Daisy, David.Tschumperle, Olivier.Lezoray}@ensicaen.fr

et al. 2011], user-selected image areas are reconstructed by copy-
ing patches from the known image zones, to those unkown. These
methods work well to reconstruct textures. Even with some vari-
ations, like avering several patches [Le Meur et al. 2011], they
generally do not provide good result in terms of global geometry
consistency. Hybrid methods also exist [Sun et al. 2005], but there
are always some cases where reconstruction let some artefacts ap-
pear. Recently, [Daisy et al. 2013] introduced a spatial patch blend-
ing technique to perceptually reduce these reconstruction artefacts,
without any changes in the way geometry is inpainted. Unfortu-
nately, this method cannot be used for production work due to com-
putational burden and memory overload.

The paper addresses these two issues and is organized as follows.
First, the principle of spatial patch blending is presented through a
complete summary of the method. Then, we redesign the blending
algorithm and show the various improvements it implies. Finally,
we illustrate the relevance of our approach by commented results
and comparisons with some state-of-the-art methods.

2 Patch Blending Context and Previous Work

In [Daisy et al. 2013] was proposed a method that allows reducing
artefacts produced by any patch-based inpainting algorithm [Crim-
inisi et al. 2004; Le Meur et al. 2011] in an image I . A result image
J is produced where possible inter-patch seams and inconsistencies
are cleverly hidden, rendering the image perceptually more pleas-
ant. In this method, it is proposed to modify the process of any
patch-based inpainting algorithm so that it provides additional in-
formation. The latter is used to perform the two steps of our artefact
reduction technique, namely: 1) the artefact detection 2) the spatial
patch blending.

• Artefact Detection. This first step of this method is empirically
based on the two following hypothesis. For a reconstructed image
I which reconstruction patch locations are stored in a map U : p ∈
I 7→ q ∈ I , it is hypothesized that: 1) there are sharp color or
luminosity variations where artefacts are located, and 2) patches
from remote locations seem probably differents. The idea is first to
combine the latter to estimate a set of points E where the strongest
artefacts are located. Then, the map σ : p ∈ I 7→ σ(p) ∈ R of
blending amplitudes is computed, and gives to each point p inside
a maskM a weight depending on its distance to the nearest artefact
locations and strengths (cf. Fig. 2, and (3) of [Daisy et al. 2013]).



(a) A reconstructed image where
artefacts are to be detected.

(b) The superimposed set E with the
associated amplitudes σ result of the
artefact detection in 2(a).

Figure 2: Illustration of the artefact detection result.

• Spatial Patch Blending. In classic patch-based inpainting meth-
ods, the reconstruction of an image is a kind of patchwork. Patches
are iteratively extracted from the image, cut up, and the remaining
pieces are pasted inside M to complete the given image. The main
idea of the spatial patch blending is to point out the fact that parts of
the individual patches are discarded during sequential compositing,
but these parts contain valuable information that could have been
used if a different insertion order had been used. In this method,
the scrapped offcuts are kept and spatially blended in order to re-
duce seams between the pieces of patches pasted side by side. This
method is defined as a pixelwise process, and for each point p ∈M ,
the set Ψp of patches overlapping at p is extracted. Then, a com-
bination of all the pixels where all the patches ψq ∈ Ψp overlap is
computed as follows:

J(p) =

∑
ψq∈Ψp

w(q,p) ψq(p−q)

ε+
∑

ψq∈Ψp

w(q,p)
(1)

The gaussian weight function w(p, q) = e
d(q,p)2

σ2 defines the way
patches are blended together during the process. This function
strongly depends on the distance function d. In [Daisy et al. 2013],
they have used the minimal distance from the point p to every point
in the piece of pasted patch ψq . As shown in Fig. 3, this method
provides clearly good results in terms of artefact reduction regard-
ing a classical patch-based inpainting result. On the other hand, the
memory usage for storing the map U is too important. Then, even
if it is reasonable as compared to these of the inpainting process,
the computation time does not allow this method to be used easily
and interactively. The main reason is that as many distance maps as
reconstruction patches have to be computed. This makes the com-
putation time to be very dependant of the mask size used for the
inpainting. In addition, the size of E is a little bit overestimated by
the artefact detection. In this pixel per pixel process, this causes the
computation to increase noticeably. The weaknesses of [Daisy et al.
2013] have brought us to redesign some parts of their algorithm to
make it faster while maintaining the good perceptual quality of the
results. The contributions we propose through this paper are mainly
based on the enhancement of the spatial patch blending algorithm
in terms of time consumption, but also memory usage.

3 Enhanced Spatial Patch Blending

We propose here a spatial patch blending algorithm for pattern-
based inpainting algortihms. Firstly, this method is described as
it is, and then we discuss the different enhancements in comparison
with the method of [Daisy et al. 2013].

Figure 3: Results of a spatial patch blending (zoomed). From left to
right : masked image, result of patch-based inpainting [Criminisi
et al. 2004], result of [Daisy et al. 2013].

• Spatial blending reformulation. At first sight, the method we
propose seems to be very different from [Daisy et al. 2013]. Rather
than independently computing each final pixel J(p) by looking for
every p ∈M , the set of local features that allows computing (1), we
propagate each patch feature at once on the pasting neighbourhoods
of p. Loop on each point p is replaced by a loop on all patches ψq
pasted in I during the inpainting. This second loop needs much less
computing iterations (approximatly n2/2 less where n × n is the
inpainting patch dimension). This loop factorization is theorically
possible only if the bandwidth σ(p) of the blending is considered
as constant on the whole image. This obviously not the case. To
do so, a multiscale approach is adopted. The loop on patches is re-
peated as many times as the number of different scales that can be
considered in the values of σ (we have quantized these values into
N scales). As N can be chosen small enough (typically of about
ten scales, smaller values would leads to some discontinuities in
the blending), the looping repetition factor due to the multi-scale
aspect of our algorithm remains much less important than the aver-
age gain of n2/2 at a specified scale. This makes the final algorithm
very interesting in terms of complexity compared to the approach
of [Daisy et al. 2013]. Algorithm 1 details the whole principle of
our multi-scale spatial blending method.

One can notice that this method of blending acts like a post-
processing of the image inpainting result, but requires to modify the
considered patch-based inpainting algorithm, for the reconstruction
patches locations and the reconstruction points to be stored.

• Differences with the previous approach. The differences of our
method compared to the approach of [Daisy et al. 2013] are the
following:

Quantized spatial blending scales: Our optimized algorithm con-
siders a quantized version of the spatial blending amplitude map
σ. The set of the blending results Js are computed for each scale
σs ∈ [1, N ] ⊂ N and are then merged in a final image J . This im-
age contains pixels of J1, J2, . . . , JN depending on the local (quan-
tized) scale defined in σ̃(p). The storage of all blending scales Js
can be easily avoided by transferring directly all the pixels com-
puted at a scale s to the final image J . In this case, the last loop of
Algorithm 1 has to be done in the main scale loop (line 5).

Modified weight function: The spatial patch blending is locally
performed as a linear combination of all the patches that would have
overlapped with a different inpainting order. One can demonstrate
that with this new algorithm, the weighting functionw(p, q) of each
patch (also used in (1)) depends only on the distance from a point to
the neighbour reconstruction points rather than the distance from a
point to a piece of pasted patch (as described in [Daisy et al. 2013]).



Algorithm 1: Fast spatial patch blending for inpainting algorithms.
Input: Inpainted image I, Inpainting mask M , Number of scales N .
Output: Image J with spatially blended patches.
Initialize P = Ordered list of original patch center locations (p, q)1
pasted in M during the inpainting;
Initialize C = Ordered list of patch pasting locations (x, y) of during2
inpainting;
Initialize σ = Estimated local blending amplitude (section 2);3
Initialize σ̃ = Uniform quantization of σ in N levels (σ1, . . . , σN );4
// Computation of the spatial blending levels Js

// for differents σs

for s ∈ [1, N ] ⊂ N, do5
Initialize Js = Result color image of the blending at scale s,6
initialized to 0 for all pixel in M , and I(p) elsewhere;
Initialize A = Scalar accumulation image of the size of I,7
initialized to 0 for all pixels in M , and 1 elsewhere;
Initialize φ = Image of size m×m, containing a centered8
Gaussian of variance σs;
for k ∈ P do9

Add the patch of size m×m of I located at P (k) to the10
image Js at C(k);
Add the image φ of the gaussian weights in A at C(k);11

Divide Js by A (normalisation of the added colors).12

// Combine all the blending scales

// in a result image.

for p ∈M , do13
s = σ̃(p);14
J(p) = Js(p);15

(a) Weights used in [Daisy et al.
2013].

(b) Weights use in our new method.

Figure 4: Illustration of the difference between weights of [Daisy
et al. 2013] (a), and those used in our fast spatial patch blending
algorithm (b).

This is mainly thanks to this approximation that our optimized spa-
tial blending version of the algorithm of [Daisy et al. 2013] can be
reformulated. From an experimental point of view, one can notice
that the difference between the results produced with the two weight
functions are very difficult to see in the final blending results.

Mask-external spatial patch blending: In Algorithm 1, the spatial
blending is naturally extended to the outside of the inpainting mask
M . In terms of visual appeal, this is very interesting since a smooth
transition is created between the known colors and these of the re-
constructed area. All the results presented in the following section
take advantage of this special feature. To respect the classic inpaint-
ing formalism, one can constraint pixels from outside the mask not
to be modified by our spatial patch blending (by copying all known
pixels from I to the final image J at the end of the process).

Performance improvement: The gain performance of our ap-
proach as compared to [Daisy et al. 2013], and the comparison with
the state-of-the-art approaches of [Criminisi et al. 2004] (inpaint-
ing without spatial patch blending) and Photoshop (very fast, based
on [Wexler et al. 2007; Barnes et al. 2009]) is illustrated Fig. 5.
In order to show the efficiency of our new method, we have made
some experimentations. Fig. 5 summarizes the results on a set of
medium-sized image 1, and mainly gives us three interesting infor-
mations. First, the gain of time between the approach of [Daisy
et al. 2013] and our method depends on the kind of processed im-
ages (mainly depending on the size of M ), but is very significant
in each case (from 6 to 30 times faster for the presented examples).
Then, there is no meaningful difference of computation time be-
tween method in [Criminisi et al. 2004] and ours. This means that
there is no additional cost to process our spatial patch blending al-
gorithm after a classic patch-based inpainting. Also, one can see
that the content-aware filling algorithm [Wexler et al. 2007; Barnes
et al. 2009] provided in Photoshop is noticeably faster than our
method, but is most likely using material accelerations like GPU
processing or multi-core programming. This is not the case of our
method, provided with standard C++ implementation with no ac-
celeration.

Figure 5: Illustration of execution time comparison between our
method, method of [Daisy et al. 2013], with state-of-the-art meth-
ods. The less, the better.

4 Results and Reproducibility

Some results provided by our method are illustrated Fig. 6 and com-
pared to state-of-the-art methods. Spatial patch blending is clearly
demonstrated through our examples and our way of making it faster
allows now this method to be used interactively. In addition, a soft-
ware integration of our method has been made and the source code
is now available to the community, making our fast spatial patch
blending algorithm fully reproducible:

• The source code of our technique is available as a function named
inpaint patch() in G’MIC [Tschumperlé 2013] source codes.

• A dedicated filter has been added to the G’MIC plugin for the
open source GIMP2 software, allowing non specialist people to use
it easily thanks to an enhanced graphical user interface.

1http://daisy.users.greyc.fr/@publications:id=fspba.dtl.2013
2http://www.gimp.org/



(a) Masked color image. (b) Result obtained with [Criminisi
et al. 2004].

(c) Result obtained with photoshop.
[2009; 2007]

(d) Our result.

(e) Masked color image. (f) Result obtained with [Criminisi
et al. 2004].

(g) Result obtained with photoshop.
[2009; 2007]

(h) Our result.

(i) Masked color image. (j) Result obtained with [Criminisi
et al. 2004].

(k) Result obtained with photo-
shop.[2009; 2007]

(l) Our result.

Figure 6: Comparison with several state-of-the-art methods (zoomed).

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28, 3
(July), 24:1–24:11.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In Proc. of the 27th annual SIG-
GRAPH conference, SIGGRAPH ’00, 417–424.

CRIMINISI, A., PÉREZ, P., AND TOYAMA, K. 2004. Region filling
and object removal by exemplar-based image inpainting. IEEE
Trans. Im. Proc. 13, 9 (Sept.), 1200–1212.

DAISY, M., TSCHUMPERLÉ, D., AND LÉZORAY, O. 2013. Spatial
patch blending for artefact reduction in pattern-based inpainting
techniques. In Int. Conf. on Computer Analysis of Images and
Patterns(CAIP), vol. LNCS 8048, 523–530.

LE MEUR, O., GAUTIER, J., AND GUILLEMOT, C. 2011.
Examplar-based inpainting based on local geometry. In ICIP,
3401–3404.

MASNOU, S., AND MOREL, J.-M. 1998. Level lines based disoc-
clusion. In ICIP (3), 259–263.

SUN, J., YUAN, L., JIA, J., AND SHUM, H.-Y. 2005. Image
completion with structure propagation. ACM Trans. Graph. 24,
3 (July), 861–868.

TSCHUMPERLÉ, D., AND DERICHE, R. 2005. Vector-valued im-
age regularization with pdes: A common framework for different
applications. IEEE Trans. PAMI 27, 4, 506–517.

TSCHUMPERLÉ, D. 2013. G’MIC : Greyc’s magic for image com-
puting. http://gmic.sourceforge.net/ .

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE Trans. Pattern Anal. Mach. In-
tell. 29, 3 (Mar.), 463–476.


